Scholar Labs: hacia las respuestas académicas vitaminadas con IA
DOI:
https://doi.org/10.3145/thinkepi.2025.e19a28Resumen
Se presenta un análisis funcional de Scholar Labs, la propuesta, todavía en fase beta, de inteligencia artificial integrada en Google Scholar. Se examina su interfaz de búsqueda con el propósito de clarificar sus funciones e identificar los recursos que pone a disposición del usuario. Para ello, la herramienta se pone a prueba mediante la aplicación de una serie de peticiones (prompts) que permiten describir su comportamiento y valorar su grado de eficacia a fecha de su día de lanzamiento. A pesar de las limitaciones actuales y la previsible evolución de la herramienta, se vislumbran dos grandes oportunidades para la comunidad científica: nuevas formas de interactuar con Google Scholar para la recuperación de documentos académicos y nuevos desafíos para incrementar la visibilidad de nuestra producción científica.Descargas
Citas
Ameer, Madiha; Afzal, Muhammad T. (2019). “Evaluation of h-index and its qualitative and quantitative variants in neuroscience”. Scientometrics, v. 121, n. 2, pp. 653-673. https://doi.org/10.1007/s11192-019-03209-6
Beel, Jöran; Gipp, Bela; Wilde, Erik (2010). “Academic Search Engine Optimization (ASEO). Optimizing scholarly literature for Google Scholar & Co. Journal of scholarly publishing, v. 41, n. 2, pp. 176-190. https://doi.org/10.3138/jsp.41.2.176
Bornmann, Lutz; Daniel, Hans-Dieter (2007). “What do we know about the h index?”. Journal of the American society for information science and technology, v. 58, n. 9, pp. 1381-1385. https://doi.org/10.1002/asi.20609
Drivas, Ioannis C.; Sakas, Damianos P.; Giannakopoulos, Georgios A.; Kyriaki-Manessi, Daphne (2019). Search engines’ visits and users’ behavior in websites: optimization of users engagement with the content. In International Conference on Business Intelligence & Modelling (pp. 31-45). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-57065-1_3
Godlevsky, Michael D.; Orekhov, Sergey V.; Orekhova, Elena (2017). “Theoretical fundamentals of Search Engine Optimization based on machine learning”. In ICTERI (pp. 23-32).
Khan, Nickalus R.; Thomson, Clinton J.; Taylor, Douglas R.; Gabrick, Kyle S.; Choudhri, Asim F.; Boop, Frederick R.; Klimo Jr., Paul (2013). “Part II: Should the h-index be modified? An analysis of the m-quotient, contemporary h-index, authorship value, and impact factor”. World neurosurgery v. 80, n. 6, pp. 766-774. https://doi.org/10.1016/j.wneu.2013.07.011
Killoran, John B. (2013). How to use search engine optimization techniques to increase website visibility. IEEE Transactions on professional communication, v. 56, n. 1, pp. 50-66. https://doi.org/10.1109/TPC.2012.2237255
Ledford, Jerri L. (2015). Search engine optimization bible. John Wiley & Sons.
Mallapaty, Smriti (2024). “Can Google Scholar survive the AI revolution?”. Nature, v. 635, pp. 797-798. https://doi.org/10.1038/d41586-024-03746-y
Mejia, Cristian; Wu, Mengjia; Zhang, Yi; Kajikawa, Yuya (2021). “Exploring topics in bibliometric research through citation networks and semantic analysis”. Frontiers in research metrics and analytics, v. 6. https://doi.org/10.3389/frma.2021.742311
Saeidnia, Hamid R.; Hosseini, Elaheh; Abdoli, Shadi; Ausloos, Marcel (2025). “Unleashing the power of AI: a systematic review of cutting-edge techniques in AI-enhanced scientometrics, webometrics and bibliometrics”. Library hi tech, v.43, n.4-5, pp.1292-1314. https://doi.org/10.1108/LHT-10-2023-0514
Shelley, Hannah (2025). “Google Scholar is Doomed”. Hannah’s web log, 13 agosto. https://hannahshelley.neocities.org/blog/2025_08_13_GoogleScholar
Tay, Aaron (2025). “Scholar labs early review: Google Scholar finally enters the AI era. Aaron Tay’s Musings about Librarianship, 20 noviembre. https://aarontay.substack.com/p/scholar-labs-early-review-google
Thelwall, Mike (2010). “Webometrics: Emergent or Doomed?”. Information research: An international electronic journal, v. 15, n. 4. https://informationr.net/ir/15-4/colis713.html
Thelwall, Mike (2020). The pros and cons of the use of altmetrics in research assessment. Scholarly assessment reports, v. 2, n. 1. https://doi.org/10.29024/sar.10
Thurow, Shari (2003). Search engine visibility. New Riders.
Yuan, Sam; Verstak, Alex; Wang, Hanshen; Sethi, Akash; Shetty, Namit; Acharya, Anurag (2025, 18 noviembre). Scholar Labs: An AI powered Scholar search. Google Scholar Blog, 18 noviembre. https://scholar.googleblog.com/2025/11/scholar-labs-ai-powered-scholar-search.html
Descargas
Publicado
Cómo citar
Dimensions